Existence and non existence results for minimizers of the Ginzburg-Landau energy with prescribed degrees

نویسندگان

  • Mickaël Dos Santos
  • Remy Rodiac
چکیده

Let D = Ω\ω ⊂ R be a smooth annular type domain. We consider the simplified Ginzburg-Landau energy Eε(u) = 12 ∫

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size of planar domains and existence of minimizers of the Ginzburg-Landau energy with semi-stiff boundary conditions

The Ginzburg-Landau energy with semi-stiff boundary conditions is an intermediate model between the full Ginzburg-Landau equations, which make appear both a condensate wave function and a magnetic potential, and the simplified Ginzburg-Landau model, coupling the condensate wave function to a Dirichlet boundary condition. In the semi-stiff model, there is no magnetic potential. The boundary data...

متن کامل

Ginzburg-Landau minimizers in perforated domains with prescribed degrees

Suppose that Ω is a 2D domain with holes ω0, ω1, . . . , ωj, j = 1...k. In the perforated domain A = Ω \ ( ∪j=0 ωj) we consider the class J of complex valued maps having degrees 1 and −1 on the boundaries ∂Ω, ∂ω0 respectively and degree 0 on the boundaries of other holes. We investigate whether the minimum of the Ginzburg-Landau energy Eκ is attained in J , as well as the asymptotic behavior of...

متن کامل

Capacity of a multiply-connected domain and nonexistence of Ginzburg-Landau minimizers with prescribed degrees on the boundary

Suppose that ω ⊂ Ω ⊂ R. In the annular domain A = Ω \ ω̄ we consider the class J of complex valued maps having degree 1 on ∂Ω and ∂ω. It was conjectured in [5] that the existence of minimizers of the Ginzburg-Landau energy Eκ in J is completely determined by the value of the H-capacity cap(A) of the domain and the value of the Ginzburg-Landau parameter κ. The existence of minimizers of Eκ for al...

متن کامل

Ginzburg-Landau minimizers with prescribed degrees. Emergence of vortices and existence/nonexistence of the minimizers

Let Ω be a 2D domain with a hole ω. In the domain A = Ω \ ω consider a class J of complex valued maps having degrees 1 and 1 on ∂Ω, ∂ω respectively. In a joint work with P. Mironescu we show that if cap(A) ≥ π (subcritical domain), minimizers of the Ginzburg-Landau energy E κ exist for each κ. They are vortexless and converge in H(A) to a minimizing S-valued harmonic map as the coherency length...

متن کامل

Global minimizers for a p-Ginzburg-Landau-type energy in R

Given a p > 2, we prove existence of global minimizers for a p-GinzburgLandau-type energy over maps on R with degree d = 1 at infinity. For the analogous problem on the half-plane we prove existence of a global minimizer when p is close to 2. The key ingredient of our proof is the degree reduction argument that allows us to construct a map of degree d = 1 from an arbitrary map of degree d > 1 w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017