Existence and non existence results for minimizers of the Ginzburg-Landau energy with prescribed degrees
نویسندگان
چکیده
Let D = Ω\ω ⊂ R be a smooth annular type domain. We consider the simplified Ginzburg-Landau energy Eε(u) = 12 ∫
منابع مشابه
Size of planar domains and existence of minimizers of the Ginzburg-Landau energy with semi-stiff boundary conditions
The Ginzburg-Landau energy with semi-stiff boundary conditions is an intermediate model between the full Ginzburg-Landau equations, which make appear both a condensate wave function and a magnetic potential, and the simplified Ginzburg-Landau model, coupling the condensate wave function to a Dirichlet boundary condition. In the semi-stiff model, there is no magnetic potential. The boundary data...
متن کاملGinzburg-Landau minimizers in perforated domains with prescribed degrees
Suppose that Ω is a 2D domain with holes ω0, ω1, . . . , ωj, j = 1...k. In the perforated domain A = Ω \ ( ∪j=0 ωj) we consider the class J of complex valued maps having degrees 1 and −1 on the boundaries ∂Ω, ∂ω0 respectively and degree 0 on the boundaries of other holes. We investigate whether the minimum of the Ginzburg-Landau energy Eκ is attained in J , as well as the asymptotic behavior of...
متن کاملCapacity of a multiply-connected domain and nonexistence of Ginzburg-Landau minimizers with prescribed degrees on the boundary
Suppose that ω ⊂ Ω ⊂ R. In the annular domain A = Ω \ ω̄ we consider the class J of complex valued maps having degree 1 on ∂Ω and ∂ω. It was conjectured in [5] that the existence of minimizers of the Ginzburg-Landau energy Eκ in J is completely determined by the value of the H-capacity cap(A) of the domain and the value of the Ginzburg-Landau parameter κ. The existence of minimizers of Eκ for al...
متن کاملGinzburg-Landau minimizers with prescribed degrees. Emergence of vortices and existence/nonexistence of the minimizers
Let Ω be a 2D domain with a hole ω. In the domain A = Ω \ ω consider a class J of complex valued maps having degrees 1 and 1 on ∂Ω, ∂ω respectively. In a joint work with P. Mironescu we show that if cap(A) ≥ π (subcritical domain), minimizers of the Ginzburg-Landau energy E κ exist for each κ. They are vortexless and converge in H(A) to a minimizing S-valued harmonic map as the coherency length...
متن کاملGlobal minimizers for a p-Ginzburg-Landau-type energy in R
Given a p > 2, we prove existence of global minimizers for a p-GinzburgLandau-type energy over maps on R with degree d = 1 at infinity. For the analogous problem on the half-plane we prove existence of a global minimizer when p is close to 2. The key ingredient of our proof is the degree reduction argument that allows us to construct a map of degree d = 1 from an arbitrary map of degree d > 1 w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017